首页 > 科幻 > 复杂 > 第43章

第43章(1 / 1)

目 录
好书推荐: 唐骏日记 溜溜的呛姑娘 驻京办主任3 郭敬明作品全集 克里姆林宫四年时光 黑山老妖 粮食危机 猿猴世界 如何说再见 蓉岛之春

确实,模式和预测随处可见。但模式从何而来?所有自然的或人工的系统是如何对这个宇宙形成足够的了解,从而对将来的事件做出预测的呢?他说,光是谈论"意识"没有用。大多数模型显然并没有意识:比如寻找营养的细菌,它甚至都没有大脑。谈论意识在任何情况下也是个用未经证明的假定来做的辩论。意识又是从哪里来的?是谁设计了编程员的程序?

荷兰德说,最终的答案只能是"没人操纵这一切。"因为如果真由一个编程员潜伏在幕后,就像"有鬼魂附于机器",那么你等于什么都没有解释。你只是把这团谜推到别的地方去了。但幸运的是,还有一个选择:从环境而来的反馈,这是达尔文的伟大洞见。一个作用者能够改善自己的内在模式,并不需要任何超自然的指引。它只是不断测试自己的模型,看看这些模型对真实世界的预测有多么准确。如果它能够在实践中存活下来,它就调整自己的这些模型,以使自己下次做得更好。当然,在生物学上,作用者是独个的生物体,反馈是由自然选择提供的,模型的不断改良被称为进化。在认知学上,这个过程基本上是一样的:作用者是独立的心智,反馈自老师和直接经验而来,改善被称为学习。确实,这正是塞缪尔电脑跳棋手的运作机制。不管就生物学而言还是就认知学而言,一个适应性作用者都必须要利用这个世界告诉你的信息。

当然,下一个问题就是,怎样做到这个?荷兰德在BACH小组和伙伴们长时间地讨论这个基本概念。但到最后只得出,有一个办法能确定这个概念:必须建立一个计算机模拟的适应性作用者,就像他十五年前研究基因算法一样。

但不幸的是,他发现,到了1977年,人工智能主流知识已经不如1962年那么有助于他了。到了1977年,人工智能的研究领域无疑已经取得了很大的进展。比如在斯坦福大学,人工智能小组正在研制一系列被称为专家系统的极富成效的程序。专家系统能够模拟专业知识,比如可以通过运作成百条规则来模拟一个医生:"如果病人患的是细菌感染性脑膜炎,正在发高烧,那么也许是某种细菌感染。"该项研究已经引起了投资者的兴趣和注意。

但荷兰德对于应用性研究并不感兴趣。他想要的是一个关于适应性作用者的基本理论。从他的角度来看,这二十年来人类在人工智能领域取得进展的代价就是忽略了所有重要的方面,从对学习的研究到对来自环境的反馈的研究都受到了忽略,在荷兰德看来,反馈是最根本的问题。但除了像塞缪尔这样个别的人物之外,人工智能领域的人似乎都认为,学习是可以放置一边,不忙应付的。他们以为可以待他们将对语言的理解、人类问题解决法弄明白以后,或把对其他抽象推理问题的程序编完美后再来研究学习的问题。专家系统的设计者们甚至还为此而感到骄傲。他们谈论"知识工程",也就是和相关的专家交谈几个月后,为新的专家系统制定出成百条规则,来回答:"在这种情况下你该怎么办?在那种情况下你该怎么办?"这类的问题。

公平地说,就是知识工程师都不得不承认,如果程序真能够像人一样通过传授和经验学到他们的专业知识,如果有人能想出来如何在应用这些软件时不至于像现在这么复杂和麻烦的话,事情就会顺利得多了。但对荷兰德来说,这正是问题之所在。拿现存的"学习模型"草草拼凑成一个软件解决不了任何问题。学习是认知的最根本的问题,正如进化是生物学的最根本的问题一样。这意味着,学习的机制必须在一开始就投入到认知建筑图纸中去,而不是到最后才被草率加入。荷兰德的理想模式仍然是赫伯式的神经网络,其最重要的一点是,每一次思维的神经冲动都强化了其神经连接,从而使思考成为可能。荷兰德确信,思考和学习只是大脑中同件事物的两个方面。他希望在他的适应性作用者的研究中能抓住这个根本的问题。

但尽管如此,荷兰德却并不想再回过头去重做神经网络模拟。虽然从IBM701开始至今已有二十五年了,但计算机的功能仍然没有强到能够按他想达到的规模做完整的赫伯式的计算机模拟。在六十年代,神经网络研究在"视感控制"这个标题下确实有过一阵短暂的小高潮。视感控制是视觉研究中专门用来识别特征的神经网络。但视感控制在赫伯实际所言的细胞集合中是一个极其简化的版式。(即使在识别视觉特征上,视感控制的功能也不强,这就是为什么视感控制已经不再受人重视的原因。)荷兰德对新一代的神经网络系统也并不十分欣赏。新一代的神经网络系统于七十年代末期开始流行,而且自此受到了很大关注。荷兰德说,这些系统比视感控制系统要先进些,但却仍然不能支持细胞集合的研究。确实,大多数版本根本就没有共鸣。通过网络的信号瀑布只有从前到后的单一走向。他说:"这些关联主义的网络在刺激/反馈行为方面和模型识别方面的功能很强,但从总体上来说却忽略了内部反馈的需要。而内部反馈正是赫伯认为细胞集合所不可或缺的。除了少数情况以外,神经网络研究人员基本上不在这个方面下功夫。"

结果荷兰德决定自己设计一个杂交的模拟适应性作用者,把神经网络和专家系统的长处相结合。为了加强计算机效率,他先用专家系统有名的"如果……则"规则开始入手。但他是从神经网络角度采用这个规则的。

荷兰德说,事实上,在任何情况下都会有类似"如果……则"的规则。六十年代末,在人们远还没听说过专家系统以前,基于规则的系统就已经作为人类用于认知的普通功能的计算机而被卡内奇-麦伦一派的爱伦·纽威尔和赫伯特·西蒙介绍进计算机编程里来了。纽威尔和西蒙把每一条规则都当作一个单一的知识包,或一个单一的技术组合。比如"如果吱吱的叫声是来自一只鸟,那么吱吱叫的东西就有翅膀",或"如果在扣留你的反对者的人质还是扣留反对者的夫人之间选择,那就扣留反对者的夫人。"而且,这些规则指出,当程序员用这种方式来表达知识时,这个规则就自动获得了认知的某种绝妙的灵活性。根据条件采取行动的规则,即"如果情况是这样的,那就采取那种办法",意味着这样的系统不在一个固定的系列,比如FORTRAN或PASCAL的某些子程序中运行。一条特定的规则只有在它的条件被满足后才会被激活,这样,它的反应对它所对应的情况而言就是恰如其分的。确实,当一条规则被激活后,它很可能会引起全部规则的连锁反应:"如果情况是A,就采取B措施"、"如果情况是B,就采取C措施"、"如果情况是C,就采取D措施",等等。大体上说,整个新的程序随着这一系列的连锁反应而产生,并会按照所提出的问题给出完善的答案,与让人兴奋的游戏式的盲目而僵硬的计算机行为相比,这才真的是智能系统所需要的机制。

另外,基于规则的系统对大脑的神经分布来说具有很大的意义。比如说,一条规则就相当于计算机中赫伯式的细胞集合之一。他说:"用赫伯的理论来看,一个细胞集合就是一个简单的声明:如果事件如此这般地发生,那么我就会被高速激发一阵子。"规则的相互作用,伴随着一条规则激活后引起的对其他规则的整个连动,就像神经稠密相关联的大脑的一个自然结果。"赫伯的每一个细胞集合都包含了大约一千个到一万个神经元。"荷兰德说。"每一个神经元又有一千到一万个与其它神经元相连的突触。所以每一个细胞集合就与其它许多细胞集合相互关联。"大体上说,激活一个细胞集合,就等于在某种内部布告栏上张贴了一个布告,就会被大脑中大多数、或所有其他细胞集合看到。"细胞集合295834108现在正在行动!"当这个布告一出现,那些与这个细胞集合有适当关联的细胞集合就会被激发起来,并把自己的布告贴到布告栏上,这就引起了不断重复的循环。

荷兰德说,纽威尔-西蒙式的基于规则的系统的内部组织与这个布告栏的比喻非常接近。这个系统的内部数据结构就相当于这种布告栏,其中包含了一系列数字布告。然后还有大量的规则,也就是计算机把上百、甚至上千的数字编码成自身的部分。当整个系统处于运作状态时,每一条规则都经常扫描布告栏,搜寻符合自己"如果"条件的布告。每当其中一条规则发现了符合自己条件的布告,它立刻就会张贴一条数据信息,来续接"则"这部分。

荷兰德说:"假如把这个系统当作某种办公室,布告栏上有必须今天处理的备忘录,每一条规则相当于办公室里的一张办公桌,负有处理某种特定的布告的责任。每一天开始的时候,每一个办公桌都将自己负责处理的备忘录集中起来。到一天结束的时候,每一张办公桌都将处理结果的备忘录再张贴到布告栏上。"当然,到了第二天早上又开始重复这个循环。另外,有些备忘录是被探测器张贴上去的,以使这个系统保持与外界正在发生的事件的联系。还有一些备忘录也许是被激活的效应器,也就是使系统能够影响外部世界的子系统。荷兰德说,探测器和效应器相当于眼睛和肌肉的计算机机制。

目 录
新书推荐: 共梦星际大佬后,小可怜被疼坏了 无法标记的她 末世游戏:开局一座坟包安全屋 异兽入侵,全都觉得我是它的崽 残O觉醒,指挥官身娇体弱被痴缠 被抛弃后,我成了全人类的爸爸 独守要塞三年,我成了长夜领主 灰烬之上:人类文明重建纪 软萌人鱼幼崽,治愈全星际被团宠 末日冰原:我能吞噬尸体进
返回顶部